Radical preservation and the finitistic dimension
Abstract
We introduce the notion of radical preservation and prove that a homological radical-preserving homomorphism of Artin algebras with superfluous kernel reflects the finiteness of the little finitistic, the big finitistic and the global dimension. As an application, we prove that every bound quiver algebra with quasi-uniform Loewy length, a class of algebras introduced in this paper, has finite (big) finitistic dimension. Moreover, we construct an explicit family of such finite dimensional algebras where the finiteness of their big finitistic dimension does not follow from the existing results in the literature.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.10965
- Bibcode:
- 2024arXiv241210965G
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematics - Rings and Algebras;
- 16E05;
- 16E10;
- 16G20;
- 16L30;
- 16N20;
- 18A22
- E-Print:
- 16 pages, comments are welcome