Jetted Seyfert Galaxies at z = 0: Simulating Feedback Effects on Galactic Morphology and Beyond
Abstract
We use high-resolution cosmological zoom-in simulations to model feedback from Seyfert-type supermassive black hole (SMBH) jets onto galaxies with identical dark matter (DM) halos of log(M/M$_\odot$) ~ 11.8. The low mass, ~10$^6$ M$_\odot$, seed SMBHs, have been introduced when the parent DM halos have reached log(M/M$_\odot$) ~ 11, at z ~ 3.7. In a controlled experiment, we vary only the efficiency of the SMBH accretion and focus on galaxies and their immediate environment properties. Our results show that the AGN jet feedback has a substantial effect on the basic properties of Seyfert-type galaxies, such as morphology, gas fraction and distribution, star formation rate and distribution, bulge-to-disk ratio, DM halo baryon fraction, and properties of circumgalactic medium (CGM) and beyond. These have been compared to a galaxy with supernovae only feedback. We focus on the energy deposition by the jet in the ISM and IGM, and follow the expansion of the multiple jet cocoons to 2 Mpc. We find that the jet-ISM interaction gradually pushes the star formation to larger radii with increasing accretion efficiency, which results in increased mass of the outer stellar disk, which is best fit as a double-exponential disk. Furthermore, we compare our galaxies and their properties with the observed nearby Seyfert galaxies, including the scaling relations, and find a close agreement, although statistical analysis of observed Seyferts is currently missing. In a forthcoming paper, we focus on evolution of these objects at z<10 and study the effect of the SMBH seeding redshift on galaxy evolution.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.09679
- Bibcode:
- 2024arXiv241209679G
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted for publication by ApJ