NExT-LF: A Novel Operational Modal Analysis Method via Tangential Interpolation
Abstract
Operational Modal Analysis (OMA) is vital for identifying modal parameters under real-world conditions, yet existing methods often face challenges with noise sensitivity and stability. This work introduces NExT-LF, a novel method that combines the well-known Natural Excitation Technique (NExT) with the Loewner Framework (LF). NExT enables the extraction of Impulse Response Functions (IRFs) from output-only vibration data, which are then converted into the frequency domain and used by LF to estimate modal parameters. The proposed method is validated through numerical and experimental case studies. In the numerical study of a 2D Euler-Bernoulli cantilever beam, NExT-LF provides results consistent with analytical solutions and those from the benchmark method, NExT with Eigensystem Realization Algorithm (NExT-ERA). Additionally, NExT-LF demonstrates superior noise robustness, reliably identifying stable modes across various noise levels where NExT-ERA fails. Experimental validation on the Sheraton Universal Hotel is the first OMA application to this structure, confirming NExT-LF as a robust and efficient method for output-only modal parameter identification.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.09418
- Bibcode:
- 2024arXiv241209418D
- Keywords:
-
- Electrical Engineering and Systems Science - Systems and Control