PhishIntel: Toward Practical Deployment of Reference-based Phishing Detection
Abstract
Phishing is a critical cyber threat, exploiting deceptive tactics to compromise victims and cause significant financial losses. While reference-based phishing detectors (RBPDs) achieve high precision by analyzing brand-domain consistency, their real-world deployment is hindered by challenges such as high latency and inefficiency in URL analysis. To address these limitations, we present PhishIntel, an end-to-end phishing detection system for real-world deployment. PhishIntel intelligently determines whether a URL can be processed immediately or not, segmenting the detection process into two distinct tasks: a fast task that checks against local blacklists and result cache, and a slow task that conducts online blacklist verification, URL crawling, and webpage analysis using an RBPD. This fast-slow task system architecture ensures low response latency while retaining the robust detection capabilities of RBPDs for zero-day phishing threats. Furthermore, we develop two downstream applications based on PhishIntel: a phishing intelligence platform and a phishing email detection plugin for Microsoft Outlook, demonstrating its practical efficacy and utility.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.09057
- Bibcode:
- 2024arXiv241209057L
- Keywords:
-
- Computer Science - Cryptography and Security