LOMA: Language-assisted Semantic Occupancy Network via Triplane Mamba
Abstract
Vision-based 3D occupancy prediction has become a popular research task due to its versatility and affordability. Nowadays, conventional methods usually project the image-based vision features to 3D space and learn the geometric information through the attention mechanism, enabling the 3D semantic occupancy prediction. However, these works usually face two main challenges: 1) Limited geometric information. Due to the lack of geometric information in the image itself, it is challenging to directly predict 3D space information, especially in large-scale outdoor scenes. 2) Local restricted interaction. Due to the quadratic complexity of the attention mechanism, they often use modified local attention to fuse features, resulting in a restricted fusion. To address these problems, in this paper, we propose a language-assisted 3D semantic occupancy prediction network, named LOMA. In the proposed vision-language framework, we first introduce a VL-aware Scene Generator (VSG) module to generate the 3D language feature of the scene. By leveraging the vision-language model, this module provides implicit geometric knowledge and explicit semantic information from the language. Furthermore, we present a Tri-plane Fusion Mamba (TFM) block to efficiently fuse the 3D language feature and 3D vision feature. The proposed module not only fuses the two features with global modeling but also avoids too much computation costs. Experiments on the SemanticKITTI and SSCBench-KITTI360 datasets show that our algorithm achieves new state-of-the-art performances in both geometric and semantic completion tasks. Our code will be open soon.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.08388
- Bibcode:
- 2024arXiv241208388C
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- Accepted by AAAI2025