Determining superconvergence points for $L2-1_\sigma$ scheme of variable-exponent subdiffusion and error estimate
Abstract
We consider the $L2-1_\sigma$ scheme for subdiffusion of variable exponent. In existing works, determining the superconvergence points requires solving a nonlinear equation relate to the variable exponent at each time step. This work relaxes the selection criterion of superconvergence points without affecting the numerical accuracy, which may reduce the cost of determining superconvergence points. Then we prove error estimates for the $L2-1_\sigma$ scheme of variable-exponent subdiffusion. Numerical results are performed to substantiate the theoretical findings.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.08379
- Bibcode:
- 2024arXiv241208379H
- Keywords:
-
- Mathematics - Numerical Analysis