Mapping the spatial extent of HI-rich absorbers using MgII absorption along gravitational arcs
Abstract
HI-rich absorbers seen within quasar spectra contain the bulk of neutral gas in the Universe. However, the spatial extent of these reservoirs are not extensively studied due to the pencil beam nature of quasar sightlines. Using two giant gravitational arc fields (at redshifts 1.17 and 2.06) as 2D background sources with known strong MgII absorption observed with the MUSE integral field spectrograph (IFS), we investigated whether spatially mapped MgII absorption can predict the presence of strong HI systems, and determine both the physical extent and HI mass of the two absorbing systems. We created a simple model of an ensemble of gas clouds in order to simultaneously predict the HI column density and gas covering fraction of HI-rich absorbers based on observations of the MgII rest-frame equivalent width in IFS spaxels. We first test the model on the field with HI observations already available from the literature, finding that we can recover HI column densities consistent with the previous estimates (although with large uncertainties). We then use our framework to simultaneously predict the gas covering fraction, HI column density and total HI mass ($M_{\rm{HI}}$) for both fields. We find that both of the observed strong systems have a covering fraction of $\approx70$% and are likely damped Lyman $\alpha$ systems (DLAs) with $M_{\rm{HI}}>10^9\ M_{\odot}$. Our model shows that the typical MgII metrics used in the literature to identify the presence of DLAs are sensitive to the gas covering fraction. However, these MgII metrics are still sensitive to strong HI, and can be still applied to absorbers towards gravitational arcs or other spatially extended background sources. Based on our results, we speculate that the two strong absorbers are likely representative of a neutral inner circumgalactic medium and are a significant reservoir of fuel for star formation within the host galaxies.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.07652
- Bibcode:
- 2024arXiv241207652B
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 15 pages, 6 Figures, 3 appendices. Accepted for publication on Astronomy &