Prospects of a statistical detection of the 21-cm forest and its potential to constrain the thermal state of the neutral IGM during reionization
Abstract
The 21-cm forest signal is a promising probe of the Epoch of Reionization complementary to other 21-cm line observables and Ly$\alpha$ forest signal. Prospects of detecting it have significantly improved in the last decade thanks to the discovery of more than 30 radio-loud quasars at these redshifts, upgrades to telescope facilities, and the notion that neutral hydrogen islands persist down to $z\lesssim 5.5$. We forward-model the 21-cm forest signal using semi-numerical simulations and incorporate various instrumental features to explore the potential of detecting the 21-cm forest at $z=6$, both directly and statistically, with the currently available (uGMRT) and forthcoming (SKA1-low) observatories. We show that it is possible to detect the 1D power spectrum of the 21-cm forest spectrum, especially at large scales of $k\lesssim8.5\,\rm MHz^{-1}$ with the $500\,\rm hr$ of the uGMRT time and $k\lesssim32.4\,\rm MHz^{-1}$ with the SKA1-low over $50\,\rm hr$ if the intergalactic medium (IGM) is $25\%$ neutral and these neutral hydrogen regions have a spin temperature of $\lesssim30\,\rm K$. On the other hand, we infer that a null-detection of the signal with such observations of 10 radio-loud sources at $z\approx6$ can be translated into constraints on the thermal and ionization state of the IGM which are tighter than the currently available measurements. Moreover, a null-detection of the 1D 21-cm forest power spectrum with only $50\,\rm hr$ of the uGMRT observations of 10 radio-loud sources can already be competitive with the Ly$\alpha$ forest and 21-cm tomographic observations in disfavouring models of significantly neutral and cold IGM at $z=6$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.06879
- Bibcode:
- 2024arXiv241206879S
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 14 pages, 15 figures. Submitted to MNRAS. Version after addessing referee's first comments. Comments welcome