Fibre stability for dominated self-affine sets
Abstract
Let $K$ be a planar self-affine set. Assuming a weak domination condition on the matrix parts, we prove for all backward Furstenberg directions $V$ that $$\max_{E\in\operatorname{Tan}(K)} \max_{x\in \pi_{V^\bot}(E)} \operatorname{dim_H} (\pi_{V^\bot}^{-1}(x)\cap E) = \operatorname{dim_A} K - \operatorname{dim_A} \pi_{V^\bot}(K).$$ Here, $\operatorname{Tan}(K)$ denotes the space of weak tangents of $K$. Unlike previous work on this topic, we require no separation or irreducibility assumptions. However, if in addition the strong separation condition holds, then there exists a $V\in X_F$ so that $$\max_{x\in \pi_{V^\bot}(K)} \operatorname{dim_H} (\pi_{V^\bot}^{-1}(x)\cap K) = \operatorname{dim_A} K - \operatorname{dim_A} \pi_{V^\bot}(K).$$ Our key innovation is an amplification result for slices of weak tangents via pigeonholing arguments.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.06579
- Bibcode:
- 2024arXiv241206579A
- Keywords:
-
- Mathematics - Dynamical Systems;
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Metric Geometry;
- 28A80 (Primary) 37C45;
- 30L10 (Secondary)
- E-Print:
- 35 pages + 3 page appendix, 1 figure