Triple $Z'$ signatures at $Z$ factories
Abstract
We discuss triple $Z'$ boson signatures via the decay chain of $Z \to Z' \phi \to Z' Z' Z'$, with a new light scalar $\phi$, at future Z factories such as CEPC and FCC-ee. These new bosons $\phi$ and $Z'$ naturally appear in models with a new $U(1)$ gauge symmetry which is spontaneously broken and introduced in various new physics scenarios. The branching ratio of $Z \to Z' \phi \to Z' Z' Z'$ can be larger than $10^{-12}$, which gives $O(1)$ events at Tera-Z experiments, when a product of $g_X^{}$ (new gauge coupling) and $\zeta$ ($Z$-$Z'$ mixing) is larger than around $10^{-6}$. We find that the search for $Z \to Z'Z'Z'$ can significantly improve the current bound on a kinetic mixing parameter $\epsilon$ in the dark photon case, where $\epsilon \gtrsim 10^{-6}$ with $g_X^{}={\cal O}(1)$ can be explored at Tera-Z experiments. We also show that a sufficiently large number of events with multi-lepton plus hadronic jets can be obtained in benchmark points, which cannot be realized by the usual decay of Z in the standard model.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.06302
- Bibcode:
- 2024arXiv241206302N
- Keywords:
-
- High Energy Physics - Phenomenology;
- High Energy Physics - Experiment
- E-Print:
- 6 pages, 2 figures