Irregular Hodge numbers of Frenkel--Gross connections
Abstract
Frenkel and Gross constructed a family of connections on $\mathbb{P}^1\backslash\{0,\infty\}$, for almost simple groups $\check{G}$ and their representations. In this article, we calculate the irregular Hodge numbers of these Frenkel--Gross connections, and, as an application, we prove a conjecture of Katzarkov--Kontsevich--Pantev for mirror Landau-Ginzburg models of minuscule homogeneous spaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.05849
- Bibcode:
- 2024arXiv241205849Q
- Keywords:
-
- Mathematics - Algebraic Geometry;
- 32C38;
- 32S40;
- 20G20;
- 14M17;
- 14D07