Kinematic evidence of magnetospheric accretion for Herbig Ae stars with JWST NIRSpec
Abstract
Hydrogen emission lines are routinely used to estimate the mass accretion rate of pre-main-sequence stars. Despite the clear correlation between the accretion luminosity of a star and hydrogen line luminosities, the physical origin of these lines is still unclear, with magnetospheric accretion and magneto-centrifugal winds as the two most often invoked mechanisms. Using a combination of HST photometry and new JWST NIRSpec spectra, we have analysed the SED and emission line spectra of five sources in order to determine their underlying photospheric properties, and to attempt to reveal the physical origin of their hydrogen emission lines. These sources reside in NGC 3603, a Galactic massive star forming region. We have fitted the SED of the five sources employing a Markov Chain Monte Carlo exploration to estimate $T_{eff}$, $R_{*}$, $M_{*}$ and $A(V)$ for each source. We have performed a kinematic analysis across three spectral series of hydrogen lines, Paschen, Brackett, and Pfund, totalling $\ge 15$ lines. The FWHM and optical depth of the spectrally resolved lines have been studied in order to constrain the emission origin. The five sources all have SEDs consistent with young intermediate-mass stars. We have classified three of these sources as Herbig Ae type stars based on their effective temperature. Their hydrogen lines show broad profiles with FWHMs $\ge 200$ km s$^{-1}$. Hydrogen lines with high upper energy levels $n_{up}$ tend to be significantly broader than lines with lower $n_{up}$. The optical depth of the emission lines is also highest for the high velocity component of each line, becoming optically thin in the low velocity component. This is consistent with emission from a magnetospheric accretion flow, and cannot be explained as originating in a magneto-centrifugal wind, or other line emission mechanisms thought to be present in protoplanetary disks.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.05668
- Bibcode:
- 2024arXiv241205668R
- Keywords:
-
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Astrophysics of Galaxies