A kinetically constrained model exhibiting non-linear diffusion and jamming
Abstract
We present a classical kinetically constrained model of interacting particles on a triangular ladder, which displays diffusion and jamming and can be treated by means of a classical-quantum mapping. Interpreted as a theory of interacting fermions, the diffusion coefficient is the inverse of the effective mass of the quasiparticles which can be computed using mean-field theory. At a critical density \r{ho} = 2/3, the model undergoes a dynamical phase transition in which exponentially many configurations become jammed while others remain diffusive. The model can be generalized to two dimensions.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.05231
- Bibcode:
- 2024arXiv241205231R
- Keywords:
-
- Condensed Matter - Statistical Mechanics
- E-Print:
- 16 pages, 8 figures