Alpha shapes and optimal transport on the sphere
Abstract
In [3], the authors used the Legendre transform to give a tractable method for studying Topological Data Analysis (TDA) in terms of sums of Gaussian kernels. In this paper, we prove a variant for sums of cosine similarity-based kernel functions, which requires considering the more general "$c$-transform" from optimal transport theory [16]. We then apply these methods to a point cloud arising from a recent breakthrough study, which exhibits a toroidal structure in the brain activity of rats [11]. A key part of this application is that the transport map and transformed density function arising from the theorem replace certain delicate preprocessing steps related to density-based denoising and subsampling.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- 10.48550/arXiv.2412.04286
- arXiv:
- arXiv:2412.04286
- Bibcode:
- 2024arXiv241204286C
- Keywords:
-
- Mathematics - Statistics Theory;
- Mathematics - Algebraic Topology;
- 55N31;
- 62R40;
- 62G07;
- 49Q22
- E-Print:
- 21 pages, 3 figures