Bayesian Perspective for Orientation Estimation in Cryo-EM and Cryo-ET
Abstract
Accurate orientation estimation is a crucial component of 3D molecular structure reconstruction, both in single-particle cryo-electron microscopy (cryo-EM) and in the increasingly popular field of cryo-electron tomography (cryo-ET). The dominant method, which involves searching for an orientation with maximum cross-correlation relative to given templates, falls short, particularly in low signal-to-noise environments. In this work, we propose a Bayesian framework to develop a more accurate and flexible orientation estimation approach, with the minimum mean square error (MMSE) estimator as a key example. This method effectively accommodates varying structural conformations and arbitrary rotational distributions. Through simulations, we demonstrate that our estimator consistently outperforms the cross-correlation-based method, especially in challenging conditions with low signal-to-noise ratios, and offer a theoretical framework to support these improvements. We further show that integrating our estimator into the iterative refinement in the 3D reconstruction pipeline markedly enhances overall accuracy, revealing substantial benefits across the algorithmic workflow. Finally, we show empirically that the proposed Bayesian approach enhances robustness against the ``Einstein from Noise'' phenomenon, reducing model bias and improving reconstruction reliability. These findings indicate that the proposed Bayesian framework could substantially advance cryo-EM and cryo-ET by enhancing the accuracy, robustness, and reliability of 3D molecular structure reconstruction, thereby facilitating deeper insights into complex biological systems.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.03723
- Bibcode:
- 2024arXiv241203723X
- Keywords:
-
- Statistics - Applications;
- Statistics - Methodology