Sums of values of non-principal characters over shifted primes
Abstract
For a nonprincipal character $\chi$ modulo $D$, when $x\ge D^{\frac56+\varepsilon}$, $(l,D) = 1$, we prove a nontrivial estimate of the form $\sum_{n\le x}\Lambda (n)\chi (n-l)\ll x\exp\left(-0.6\sqrt{\ln D}\right)$ for the sum of values of $\chi$ over a sequence of shifted primes. Bibliography: 41 references.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.03040
- Bibcode:
- 2024arXiv241203040Z
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- This is an updated version of the paper published under the same title in 2018. Refer to the DOI provided below