Ground State Energy Estimation on Current Quantum Hardware Through The Variational Quantum Eigensolver: A Comprehensive Study
Abstract
While numerical simulations are presented in most papers introducing new methods to enhance the VQE performance, comprehensive, comparative, and applied studies remain relatively rare. We present a comprehensive, yet concise guide for the implementation of the VQE for molecular problems on NISQ devices, specifically applied to estimate the ground state energy of the BeH2 molecule using hardware-efficient and chemically informed ansätze. This work clarifies several under-documented aspects in the literature, such as the construction of the electronic Hamiltonian, the transformation of fermionic operators into qubit operators via second quantization, and the mathematical framework's details for the unitary coupled cluster single and double (UCCSD) ansatz. Our methodology, implemented using Qiskit 1.2, the latest release as of the date of this writing, is demonstrated on a noiseless simulator and further tested with noisy quantum circuits. The resilience of the VQE to quantum noise remains an open question. This study compares the computational accuracy of ground state energy estimations for molecules using the VQE across three different current quantum hardware noise models. Furthermore, our experiment on IBM's 156-qubit actual quantum computer revealed valuable insights on the real performance of the VQE on current quantum hardware.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.02606
- Bibcode:
- 2024arXiv241202606E
- Keywords:
-
- Quantum Physics