Infinitesimal $\mathcal{R}$-matrices for some families of Hopf algebras
Abstract
Given a bialgebra $H$ such that the associated trivial topological bialgebra $H[[\hbar]]$ admits a quasitriangular structure $\tilde{\mathcal{R}}=\mathcal{R}(1\otimes 1+\hbar\chi+\mathcal{O}(\hbar^2))$, one gets a distinguished element $\chi \in H \otimes H$ which is an infinitesimal $\mathcal{R}$-matrix, according to the definition given in [1]. In this paper we classify infinitesimal $\mathcal{R}$-matrices for some families of well-known Hopf algebras, among which are the generalized Kac-Paljutkin Hopf algebras $H_{2n^2}$, the Radford Hopf algebras $H_{(r,n,q)}$, and the Hopf algebras $E(n)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.02350
- Bibcode:
- 2024arXiv241202350B
- Keywords:
-
- Mathematics - Quantum Algebra;
- Mathematics - Rings and Algebras;
- Mathematics - Representation Theory;
- Primary 16T05;
- Secondary 16E40
- E-Print:
- 26 pages