Twist Coefficients of Periodic Orbits of Minkowski Billiards
Abstract
We investigate the fundamental properties of Minkowski billiards and introduce a new coordinate system $(s,u)$ on the phase space $\mathcal{M}$. In this coordinate system, the Minkowski billiard map $\mathcal{T}$ preserves the standard area form $\omega = ds \wedge du$. We then classify the periodic orbits of Minkowski billiards with period $2$ and derive formulas for the twist coefficient $\tau_1$ for elliptic periodic orbits, expressed in terms of the geometric characteristics of the billiard table. Additionally, we analyze the stability properties of these elliptic periodic orbits.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.02093
- Bibcode:
- 2024arXiv241202093V
- Keywords:
-
- Mathematics - Dynamical Systems