Ruijsenaars spectral transform
Abstract
Spectral decomposition with respect to the wave functions of Ruijsenaars hyperbolic system defines an integral transform, which generalizes classical Fourier integral. For a certain class of analytical symmetric functions we prove inversion formula and orthogonality relations, valid for complex valued parameters of the system. Besides, we study four regimes of unitarity, when this transform defines isomorphisms of the corresponding $L_2$ spaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.19659
- arXiv:
- arXiv:2411.19659
- Bibcode:
- 2024arXiv241119659B
- Keywords:
-
- Mathematical Physics;
- High Energy Physics - Theory;
- Mathematics - Classical Analysis and ODEs;
- Nonlinear Sciences - Exactly Solvable and Integrable Systems