On the universality of the halo mass function beyond ${\Lambda}$CDM cosmology
Abstract
The abundance of dark matter haloes as a function of halo mass is a key diagnostic for constraining the cosmological model. The theoretical framework based on excursion set arguments, when applied to an initial Gaussian random field of density fluctuations, predicts universal behaviour for this quantity, when variables are recast in terms of peak height. The great advantage of this, if true, is that it implies one simply needs to accurately simulate only a single cosmological model to build an emulator for any other cosmology of interest. This tantalising possibility has inspired a number of studies over the years. In practice, the diversity of ways for defining haloes has led to a variety of mixed results concerning this issue. In this work, we utilise a suite of high-resolution cosmological $N$-body simulations, to revisit this question for friends-of-friends haloes. We perform our study in the context of the flat, time-evolving dark energy model (hereafter $w$CDM), and with simple modifications of the primordial physics afforded through variations of the scalar power spectral index and its possible running. We construct the universal mass function locus from our fiducial simulation (a ${\Lambda}$CDM model) and emulate this using a linear interpolating function. We then compare this against the loci that we measure for our array of alternate models. We find mass functions that are consistent with universality to within ${\lesssim} \ 5\%$ in the fractional difference, with respect to variations of the 8 cosmological parameters that we have considered (2 variations per parameter) and for redshifts $z < 7$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.18722
- Bibcode:
- 2024arXiv241118722L
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics