Maximum possible energies of electrons accelerated in magnetospheres of rotating black holes
Abstract
Aims. To evaluate the maximum attainable energies of electrons accelerated by means of the magneto-centrifugal mechanism. We examine how the range of maximum possible energies, as well as the primary limiting factors, vary with black hole mass. Additionally, we analyze the dependence of the maximum relativistic factor on an initial distance from the black hole. Methods. To model the acceleration of electrons on rotating magnetic field lines we apply several constraining mechanisms: the inverse Compton scattering, curvature radiation and the breakdown of the bead-on-the-wire approximation. Results. The maximal Lorentz factors for electron acceleration vary with the type of a black hole. For stellar-mass black holes, electrons can be accelerated up to the Lorentz factors 2 * 10^(6) - 2 * 10^(8) with only co-rotation constrain affecting the maximal relativistic factor; In intermediate-mass black holes, the Lorentz factors are in the interval 2 * 10^(8) - 2 * 10^(11); For the supermassive black holes the Lorentz factors range from 2.5 * 10^(10) to 2 * 10^(15); while the ultra-massive black hole located at the center of Abell 1201 can accelerate electrons up to 1.1 * 10^(13) - 6.6 * 10^(16). with both the co-rotation and curvature radiation determining the final Lorentz factor for the last three categories
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.16982
- arXiv:
- arXiv:2411.16982
- Bibcode:
- 2024arXiv241116982N
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena