Reasonable Bounds for Combinatorial Lines of Length Three
Abstract
We prove that any subset $A \subseteq [3]^n$ with $3^{-n}|A| \ge (\log\log\log\log n)^{-c}$ contains a combinatorial line of length $3$, i.e., $x, y, z \in A$, not all equal, with $x_i=y_i=z_i$ or $(x_i,y_i,z_i)=(0,1,2)$ for all $i = 1, 2, \dots, n$. This improves on the previous best bound of $3^{-n}|A| \ge \Omega((\log^* n)^{-1/2})$ of [D.H.J. Polymath, Ann. of Math. 2012].
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.15137
- Bibcode:
- 2024arXiv241115137B
- Keywords:
-
- Mathematics - Combinatorics;
- Computer Science - Computational Complexity