Bootstrapping the Chiral-Gravitational Anomaly
Abstract
We analyze causality and unitarity constraints in graviton scattering amplitudes, aiming to establish new bounds on theories with $U(1)$-gravitational anomalies, such as axion models or strongly-coupled gauge theories. For this purpose, we show the necessity of coupling these theories to gravity. We obtain a universal scale $\Lambda_{\rm caus}$ at which states with $J\geq 4$ must appear in the theory. We show that this scale can lie below the quantum gravity scale. For axion models, we get $\Lambda_{\rm caus}\sim\sqrt{M_P f_a}$ where $f_a$ is the axion decay constant. In strongly-coupled gauge theories in the large-$N_c$ limit, the presence of glueballs allows to evade these bounds, provided the number of fermions $N_F\ll N_c$ and the 'tHooft coupling is not large. Nevertheless, for models that have a holographic 5D dual (large 'tHooft coupling), $\Lambda_{\rm caus}$ emerges as a new cutoff scale, unless certain conditions on the parameters of the 5D models are satisfied.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.14422
- arXiv:
- arXiv:2411.14422
- Bibcode:
- 2024arXiv241114422D
- Keywords:
-
- High Energy Physics - Theory