On averaged self-distances in finite dimensional Banach spaces
Abstract
Assume that $\mathfrak A$ is a real Banach space of finite dimension $n\geq2$. Consider any Borel probability measure $\nu$ supported on the unit ball $K$ of $\mathfrak A$. We show that \[\Delta(\nu)=\int_{x \in K}\int_{ y\in K}|x-y|_{\mathfrak A} \,\,\,\nu(x)\,\nu(y)\leq 2(1-2^{-n}f(n)),\] where $f:\mathbb N\setminus \{0,1\}\rightarrow (0,1]$ is a concrete universal function such that $f(n)\sim \frac{2}{\mathrm e n^2\log n}$. It is hoped that in the estimate`$f(n)$' can be replaced by `$1$'.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.14129
- arXiv:
- arXiv:2411.14129
- Bibcode:
- 2024arXiv241114129L
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Metric Geometry;
- Primary: 52A21;
- Secondary: 52C17
- E-Print:
- 3 pages