On the $L_{\mathrm{YJ}}(\xi, \eta, X)$ constant for the Banaś-Frączek space
Abstract
In this paper, for any $\lambda \geq 1, R_\lambda^2$ is the Banaś-Frączek space. The exact value of $L_{\mathrm{YJ}}(\xi, \eta, X)$ for this space will be calculated. Specifically, $L_{\mathrm{YJ}}\left(\xi, \eta, R_\lambda^2\right)=1+\frac{2 \xi \eta}{\xi^2+\eta^2}\left(1-\frac{1}{\lambda^2}\right)$ is the result thereafter through meticilous computation.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.13285
- arXiv:
- arXiv:2411.13285
- Bibcode:
- 2024arXiv241113285W
- Keywords:
-
- Mathematics - Functional Analysis;
- 46B20;
- F.2.2;
- I.2.7
- E-Print:
- for associated mpeg file, see http://myhost.domain/file.mpg