NCAirFL: CSI-Free Over-the-Air Federated Learning Based on Non-Coherent Detection
Abstract
Over-the-air federated learning (FL), i.e., AirFL, leverages computing primitively over multiple access channels. A long-standing challenge in AirFL is to achieve coherent signal alignment without relying on expensive channel estimation and feedback. This paper proposes NCAirFL, a CSI-free AirFL scheme based on unbiased non-coherent detection at the edge server. By exploiting binary dithering and a long-term memory based error-compensation mechanism, NCAirFL achieves a convergence rate of order $\mathcal{O}(1/\sqrt{T})$ in terms of the average square norm of the gradient for general non-convex and smooth objectives, where $T$ is the number of communication rounds. Experiments demonstrate the competitive performance of NCAirFL compared to vanilla FL with ideal communications and to coherent transmission-based benchmarks.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- arXiv:
- arXiv:2411.13000
- Bibcode:
- 2024arXiv241113000W
- Keywords:
-
- Computer Science - Information Theory;
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Signal Processing
- E-Print:
- 6 pages, 2 figures, submitted for possible publication