Reward Modeling with Ordinal Feedback: Wisdom of the Crowd
Abstract
Learning a reward model (RM) from human preferences has been an important component in aligning large language models (LLMs). The canonical setup of learning RMs from pairwise preference data is rooted in the classic Bradley-Terry (BT) model that accepts binary feedback, i.e., the label being either Response 1 is better than Response 2, or the opposite. Such a setup inevitably discards potentially useful samples (such as "tied" between the two responses) and loses more fine-grained information (such as "slightly better"). In this paper, we propose a framework for learning RMs under ordinal feedback which generalizes the case of binary preference feedback to any arbitrary granularity. Specifically, we first identify a marginal unbiasedness condition, which generalizes the assumption of the BT model in the existing binary feedback setting. The condition validates itself via the sociological concept of the wisdom of the crowd. Under the condition, we develop a natural probability model for pairwise preference data under ordinal feedback and analyze its properties. We prove the statistical benefits of ordinal feedback in terms of reducing the Rademacher complexity compared to the case of binary feedback. The proposed learning objective and the theory also extend to hinge loss and direct policy optimization (DPO). In particular, the theoretical analysis may be of independent interest when applying to a seemingly unrelated problem of knowledge distillation to interpret the bias-variance trade-off therein. The framework also sheds light on writing guidance for human annotators. Our numerical experiments validate that fine-grained feedback leads to better reward learning for both in-distribution and out-of-distribution settings. Further experiments show that incorporating a certain proportion of samples with tied preference boosts RM learning.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.12843
- arXiv:
- arXiv:2411.12843
- Bibcode:
- 2024arXiv241112843L
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Artificial Intelligence;
- Computer Science - Computation and Language;
- Statistics - Machine Learning