Local well-posedness for the periodic Boltzmann equation with constant collision kernel
Abstract
We study the Boltzmann equation with the constant collision kernel in the case of spatially periodic domain $\mathbb{T}^d$, $d\geq 2$. Using the existing techniques from nonlinear dispersive PDEs, we prove the local well-posedness result in $L^{2,r}_vH^s_x$ for $s>\frac{d}{2}-\frac{1}{4}$ and $r>\frac{d}{2}$. To reach the result, the main tool we establish is the $L^4$ Strichartz estimate for solutions to the corresponding linear equation.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.12140
- arXiv:
- arXiv:2411.12140
- Bibcode:
- 2024arXiv241112140B
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematical Physics