Some asymptotic formulae involving Cohen-Ramanujan expansions
Abstract
Cohen-Ramanujan sum, denoted by $c_r^s(n)$, is an exponential sum similar to the Ramanujan sum $c_r(n):=\sum\limits_{\substack{h=1\\{(h,r)=1}}}^{r}e^{\frac{2\pi i n h}{r}}$. An arithmetical function $f$ is said to admit a Cohen-Ramanujan expansion $ f(n):=\sum\limits_{r}\widehat{f}(r)c_r^s(n)$ if the series on the right hand side converges for suitable complex numbers $\widehat{f}(r)$. Given two arithmetical functions $f$ and $g$ with absolutely convergent Cohen-Ramanujan expansions, we derive an asymptotic formula for the sum $\sum\limits_{\substack{n\leq N}}f(n)g(n+h)$ where $h$ is a fixed non negative integer. We also provide Cohen-Ramanujan expansions for certain functions to illustrate some of the results we prove consequently.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.11890
- arXiv:
- arXiv:2411.11890
- Bibcode:
- 2024arXiv241111890C
- Keywords:
-
- Mathematics - Number Theory;
- 11A25;
- 11L03;
- 11N05;
- 11N37
- E-Print:
- arXiv admin note: substantial text overlap with arXiv:2303.09363