Multiplicity and asymptotic behavior of normalized solutions to p-Kirchhoff equations
Abstract
In this paper, we study a type of p-Kirchhoff equation $$ -\left( a+b\int_{\mathbb{R} ^3}{\left| \nabla u \right|^pdx} \right) \varDelta _pu=\lambda \left| u \right|^{p-2}u+\left| u \right|^{q-2}u, x \in \mathbb{R}^3 $$ with the prescribed mass $$ (\int_{\mathbb{R} ^3}{\left| u \right|^{p}dx})^\frac{1}{p} = c > 0 $$ where $a>0, b > 0,\frac{3}{2} <p <3, p < q < p^{\ast}:=\frac{3p}{3-p} $,$\varDelta _pu=div\left( \left| \nabla u \right|^{p-2}\nabla u \right)$ is the p-Laplacian of $u$, $\lambda \in \mathbb{R}$ is Lagrange multiplier. We consider both $L^p$-subcritical , $L^p$-critical and $L^p$-supercritical cases. Precisely, in the $L^p$-subcritical and $L^p$-critical cases, we obtain the existence and nonexistence of the normalized solutions for the p-Kirchhoff equation. In the $L^p$-supercritical case, we obtain the existence of radial ground sates and multiplicity of radial normalized solutions for the p-Kirchhoff equation. Furthermore, we study the asymptotic behavior of normalized solutions when $b \rightarrow 0^+$. Besides, when $\frac{3}{2} < p \leq 2$, benefit from the uniqueness(up to translations) of optimizer for Gargliardo-Nirenberg inequality, we show the existence and uniqueness of normalized solutions and provide the accurate descriptions.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.11037
- arXiv:
- arXiv:2411.11037
- Bibcode:
- 2024arXiv241111037Z
- Keywords:
-
- Mathematics - Analysis of PDEs