Small-signal stability of power systems with voltage droop
Abstract
The small-signal stability of power grids is a well-studied topic. In this work, we give new sufficient conditions for highly heterogeneous mixes of grid-forming inverters (and other machines) that implement a $V$-$q$ droop to stabilize viable operating states of lossless grids. Assuming the edges are not overloaded, and static voltage limits are satisfied, our conditions are fully local: They can be evaluated bus by bus without information on the rest of the grid. Other than the presence of $V$-$q$ droop, we make no model assumptions. In particular, we do not assume a specific control strategy of the inverters, the number, or type, of their internal degrees of freedom, or that the control is homogeneous throughout the system. We achieve this by recasting the dynamics of the nodes as a complex frequency reaction to an active and reactive power signal coming from the grid. By working directly in terms of the node's linearized complex frequency response, the transfer functions capturing the linear response do not depend on arbitrary phases. Further, they are easily interpretable as the frequency/amplitude reaction to active/reactive power imbalance, and correspond directly to the typical design considerations for grid-forming control. By exploiting the presence of the $V$-$q$ droop, we can ensure that the grid's active/reactive power response to a frequency/amplitude change is semi-sectorial. This allows us to use an adapted small phase theorem to obtain local sufficient stability conditions for edges and nodes, which also yields novel results for established control designs.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.10832
- arXiv:
- arXiv:2411.10832
- Bibcode:
- 2024arXiv241110832N
- Keywords:
-
- Mathematics - Optimization and Control;
- Mathematics - Dynamical Systems