Rigidity for complete maximal spacelike submanifolds in pseudo-hyperbolic space
Abstract
We prove that the scalar curvature is a rigid invariant for complete maximal spacelike $p$-submanifolds in the pseudo-hyperbolic space $\mathbb{H}^{p,q}$. We characterize the $p$-submanifolds achieving the bound and study the hyperbolicity of maximal $p$-submanifolds of $\mathbb{H}^{p,q}$. In codimension $q=1$, we deduce a rigidity result concerning the Ricci curvature of maximal hypersurfaces in anti-de Sitter spaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.10352
- arXiv:
- arXiv:2411.10352
- Bibcode:
- 2024arXiv241110352M
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- Comments welcome