Asymptotics for the number of bipartite graphs with fixed surplus
Abstract
In a recent work on the bipartite Erdős-Rényi graph, Do et al. (2023) established upper bounds on the number of connected labeled bipartite graphs with a fixed surplus. We use some recent encodings of bipartite random graphs in order to provide a probabilistic formula for the number of bipartite graphs with fixed surplus. Using this, we obtain asymptotics as the number of vertices in each class tend to infinity.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.09419
- arXiv:
- arXiv:2411.09419
- Bibcode:
- 2024arXiv241109419C
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Probability;
- 05C30;
- 60C05
- E-Print:
- 15 pages, 2 figures