Shadow analysis of an approximate rotating black hole solution with weakly coupled global monopole charge
Abstract
We investigate the shadow properties of a rotating black hole with a weakly coupled global monopole charge, using a modified Newman-Janis algorithm. This study explores how this charge and rotational effects shape the black hole's shadow, causal structure, and ergoregions, with implications for distinguishing it from Kerr-like solutions. Analysis of null geodesics reveals observable features that may constrain the global monopole charge and weak coupling parameters within nonminimal gravity frameworks. Observational data from M87* and Sgr A* constrain the global monopole charge and coupling constant to $0 \leq \gamma \lesssim 0.036$ and $-0.2 \lesssim \alpha \leq 0$, respectively.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.08564
- Bibcode:
- 2024arXiv241108564F
- Keywords:
-
- General Relativity and Quantum Cosmology;
- Astrophysics - High Energy Astrophysical Phenomena;
- High Energy Physics - Theory
- E-Print:
- 25 pages, 15 figures