From Dark Matter Minihalos to Large-Scale Radiative Feedback: A Self-Consistent 3D Simulation of the First Stars and Galaxies using Neural Networks
Abstract
A key obstacle to accurate models of the first stars and galaxies is the vast range of distance scales that must be considered. While star formation occurs on sub-parsec scales within dark matter (DM) minihalos, it is influenced by large-scale baryon-dark matter streaming velocities ($v_{\rm bc}$) and Lyman-Werner (LW) radiative feedback which vary significantly on scales of $\sim$100 Mpc. We present a novel approach to this issue in which we utilize artificial neural networks (NNs) to emulate the Population III (PopIII) and Population II (PopII) star formation histories of many small-scale cells given by a more complex semi-analytic framework based on DM halo merger trees. Within each simulation cell, the NN takes a set of input parameters that depend on the surrounding large-scale environment, such as the cosmic overdensity, $\delta(\vec{x})$, and $v_{\rm bc}$ of the cell, then outputs the resulting star formation far more efficiently than is possible with the semi-analytic model. This rapid emulation allows us to self-consistently determine the LW background intensity on $\sim$100 Mpc scales, while simultaneously including the detailed merger histories (and corresponding star formation histories) of the low-mass minihalos that host the first stars. Comparing with the full semi-analytic framework utilizing DM halo merger trees, our NN emulators yield star formation histories with redshift-averaged errors of $\sim$10.2\% and $\sim$9.2\% for PopII and PopIII, respectively. When compared to a simpler sub-grid star formation prescription reliant on halo mass function integration, we find that the diversity of halo merger histories in our simulation leads to enhanced spatial fluctuations, an earlier transition from PopIII to PopII dominated star formation, and more scatter in star formation histories overall.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.07875
- Bibcode:
- 2024arXiv241107875F
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- Submitted to JCAP -- 28 Pages -- 11 Figures