Wormhole-Induced ALP Dark Matter
Abstract
Non-perturbative gravitational effects induce explicit global symmetry breaking terms within axion models. These exponentially suppressed terms in the potential give a mass contribution to the axion-like particles (ALPs). In this work we investigate this scenario with a scalar field charged under a global $U(1)$ symmetry and having a non-minimal coupling to gravity. Given the exponential dependence, the ALP can retain a mass spanning a wide range, which can act as a dark matter component. We specify pre-inflationary and post-inflationary production mechanisms of these ALPs, with the former from the misalignment mechanism and the latter from both the misalignment and cosmic-string decay. We identify the allowed parameter ranges that explain the dark matter abundance for both a general inflation case and a case where the radial mode scalar drives inflation, each in metric and Palatini formalisms. We show that the ALP can be the dominant component of the dark matter in a wide range of its mass, $m_{a} \in [10^{-21}~\mathrm{eV},\, \mathrm{TeV}]$, depending on the inflationary scenario and the $U(1)$ breaking scale. These results indicate that ALPs can be responsible for our dark matter abundance within a setup purely from non-perturbative gravitational effects.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.07713
- Bibcode:
- 2024arXiv241107713C
- Keywords:
-
- High Energy Physics - Phenomenology;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Theory
- E-Print:
- 25 pages, 5 figures, 1 table