Some rigidity results on shrinking gradient Ricci soliton
Abstract
Suppose $(M^n, g, f)$ is a complete shrinking gradient Ricci soliton. We give several rigidity results under some natural conditions, generalizing the results in \cite{Petersen-Wylie,Guan-Lu-Xu}. Using maximum principle, we prove that shrinking gradient Ricci soliton with constant scalar curvature $R=1$ is isometric to a finite quotient of $\mathbb{R}^2\times \mathbb{S}^2$, giving a new proof of the main results of Cheng-Zhou \cite{Cheng-Zhou}.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.06395
- arXiv:
- arXiv:2411.06395
- Bibcode:
- 2024arXiv241106395O
- Keywords:
-
- Mathematics - Differential Geometry