Probing CP-violating Higgs-gauge Boson Couplings at Future Muon Collider
Abstract
We explore the sensitivity of future muon colliders to CP-violating interactions in the Higgs sector, specifically focusing on the process $\mu^- \mu^+ \to h \bar{\nu_{l}} \nu_{l}$. Using a model-independent approach within the framework of the Standard Model Effective Field Theory (SMEFT), we analyze the contribution of dimension-six operators to Higgs-gauge boson couplings, emphasizing CP-violating effects. To simulate the process, all signal and background events are generated through MadGraph. The analysis provides 95\% confidence level limits on the relevant Wilson coefficients $\tilde{c}_{HB}$, $\tilde{c}_{HW}$, $\tilde{c}_{\gamma}$, with a comparative discussion of existing experimental and phenomenological constraints. Our best constraints on the $\tilde{c}_{HB}$, $\tilde{c}_{HW}$, $\tilde{c}_{\gamma}$ with an integrated luminosity of 10 ab$^{-1}$ are $[-0.017148;0.018711]$, $[-0.002545;0.002837]$ and $[-0.010613;0.011210]$, respectively. In this context, this study highlights the capability of future muon collider experiments to probe new physics in the Higgs sector, potentially offering tighter constraints on CP-violating Higgs-gauge boson interactions than those provided by current colliders.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.04565
- Bibcode:
- 2024arXiv241104565G
- Keywords:
-
- High Energy Physics - Phenomenology
- E-Print:
- 17 pages, 9 figures