Mapping properties of the local Schrödinger maximal function with radial initial data on Damek-Ricci spaces
Abstract
Let $\Delta$ be the Laplace-Beltrami operator on a Damek-Ricci space $S$ corresponding to the left-invariant Riemannian metric, with its $L^2$-spectrum being the half line $(-\infty, -Q^2/4]$. Then for a radial $L^2$-Schwartz class function $f$, we consider the local maximal function, \begin{equation*} S^* f(x):= \displaystyle\sup_{0<t<4/Q^2} \left|S_tf(x)\right|\:, \end{equation*} associated to $S_tf$, the solution of the Schrödinger equation corresponding to $\Delta$ with initial condition $f$. In this article, we obtain the complete description of the pairs $(q, \alpha) \in [1, \infty] \times [0,\infty)$ for which one has the $L^q$ boundedness estimates of $S^* f$ on geodesic balls $B_R$, with respect to the fractional Sobolev norms of $f$, \begin{equation*} {\|S^*f\|}_{L^q\left(B_R\right)} \le C\: {\|f\|}_{H^{\alpha}(S)}\:, \end{equation*} for every radial $L^2$-Schwartz class function $f$ on $S$. Our results are sharp upto the endpoints and agree with the classical Euclidean case.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.04084
- Bibcode:
- 2024arXiv241104084D
- Keywords:
-
- Mathematics - Functional Analysis;
- Primary 35J10;
- 43A85;
- Secondary 22E30;
- 43A90
- E-Print:
- arXiv admin note: text overlap with arXiv:2407.13736