Infinitely fast critical dynamics: Teleportation through temporal rare regions in monitored quantum circuits
Abstract
We consider measurement-induced phase transitions in monitored quantum circuits with a measurement rate that fluctuates in time. The spatially correlated fluctuations in the measurement rate disrupt the volume-law phase for low measurement rates; at a critical measurement rate, they give rise to an entanglement phase transition with ``ultrafast'' dynamics, i.e., spacetime ($x,t$) scaling $\log x \sim t^{\psi_\tau}$. The ultrafast dynamics at the critical point can be viewed as a spacetime-rotated version of an infinite-randomness critical point; despite the spatial locality of the dynamics, ultrafast information propagation is possible because of measurement-induced quantum teleportation. We identify temporal Griffiths phases on either side of this critical point. We provide a physical interpretation of these phases, and support it with extensive numerical simulations of information propagation and entanglement dynamics in stabilizer circuits.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.03442
- Bibcode:
- 2024arXiv241103442S
- Keywords:
-
- Condensed Matter - Disordered Systems and Neural Networks;
- Condensed Matter - Statistical Mechanics;
- Condensed Matter - Strongly Correlated Electrons;
- Quantum Physics
- E-Print:
- 16 pages, 22 figures