Fast, robust approximate message passing
Abstract
We give a fast, spectral procedure for implementing approximate-message passing (AMP) algorithms robustly. For any quadratic optimization problem over symmetric matrices $X$ with independent subgaussian entries, and any separable AMP algorithm $\mathcal A$, our algorithm performs a spectral pre-processing step and then mildly modifies the iterates of $\mathcal A$. If given the perturbed input $X + E \in \mathbb R^{n \times n}$ for any $E$ supported on a $\varepsilon n \times \varepsilon n$ principal minor, our algorithm outputs a solution $\hat v$ which is guaranteed to be close to the output of $\mathcal A$ on the uncorrupted $X$, with $\|\mathcal A(X) - \hat v\|_2 \le f(\varepsilon) \|\mathcal A(X)\|_2$ where $f(\varepsilon) \to 0$ as $\varepsilon \to 0$ depending only on $\varepsilon$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.02764
- Bibcode:
- 2024arXiv241102764I
- Keywords:
-
- Computer Science - Data Structures and Algorithms;
- Computer Science - Machine Learning;
- Statistics - Machine Learning
- E-Print:
- 22 pages, 2 figures