Thurston norm for coherent right-angled Artin groups via $L^2$-invariants
Abstract
We define a new notion of splitting complexity for a group $G$ along a non-trivial integral character $\phi \in H^1(G; \mathbb{Z})$. If $G$ is a one-ended coherent right-angled Artin group, we show that the splitting complexity along an epimorphism $\phi \colon G \to \mathbb{Z}$ equals the $L^2$-Euler characteristic of the kernel of $\phi$. This allows us to define a Thurston-type semi-norm $\| \cdot \|_T \colon H^1(G ; \mathbb{R}) \to \mathbb{R}$ that measures the splitting complexity of integral characters. Our main tool is Friedl--Lück's $L^2$-polytope.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.02516
- Bibcode:
- 2024arXiv241102516K
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Geometric Topology;
- 20F65;
- 20F36;
- 20J05;
- 57M60
- E-Print:
- 31 pages