A Comprehensive Simulation Framework for CXL Disaggregated Memory
Abstract
Compute eXpress Link (CXL) is a pivotal technology for memory disaggregation in future heterogeneous computing systems, enabling on-demand memory expansion and improved resource utilization. Despite its potential, CXL is in its early stages with limited market products, highlighting the need for a reliable system-level simulation tool. This paper introduces CXL-DMSim, an open-source, high-fidelity full-system simulator for CXL disaggregated memory systems, comparable in speed to gem5. CXL-DMSim includes a flexible CXL memory expander model, device driver, and support for CXLio and CXLmem protocols. It supports both app-managed and kernel-managed modes, with the latter featuring a NUMA-compatible mechanism. Rigorous verification against real hardware testbeds with FPGA-based and ASIC-based CXL memory prototypes confirms CXL-DMSim's accuracy, with an average simulation error of 4.1%. Benchmark results using LMbench and STREAM indicate that CXL-FPGA memory has approximately ~2.88x higher latency than local DDR, while CXL-ASIC latency is about ~2.18x. CXL-FPGA achieves 45-69% of local DDR's memory bandwidth, and CXL-ASIC reaches 82-83%. The performance of CXL memory is significantly more sensitive to Rd/Wr patterns than local DDR, with optimal bandwidth at a 74%:26% ratio rather than 50%:50% due to the current CXL+DDR controller design. The study also shows that CXL memory can markedly enhance the performance of memory-intensive applications, with the most improvement seen in Viper (~23x) and in bandwidth-sensitive scenarios like MERCI (16%). CXL-DMSim's observability and expandability are demonstrated through detailed case studies, showcasing its potential for research on future CXL-interconnected hybrid memory pools.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.02282
- Bibcode:
- 2024arXiv241102282W
- Keywords:
-
- Computer Science - Emerging Technologies;
- Computer Science - Hardware Architecture
- E-Print:
- 15 pages, 19 figures