Quantum One-Time Programs, Revisited
Abstract
One-time programs (Goldwasser, Kalai and Rothblum, CRYPTO 2008) are functions that can be run on any single input of a user's choice, but not on a second input. Classically, they are unachievable without trusted hardware, but the destructive nature of quantum measurements seems to provide a quantum path to constructing them. Unfortunately, Broadbent, Gutoski and Stebila showed that even with quantum techniques, a strong notion of one-time programs, similar to ideal obfuscation, cannot be achieved for any non-trivial quantum function. On the positive side, Ben-David and Sattath (Quantum, 2023) showed how to construct a one-time program for a certain (probabilistic) digital signature scheme, under a weaker notion of one-time program security. There is a vast gap between achievable and provably impossible notions of one-time program security, and it is unclear what functionalities are one-time programmable under the achievable notions of security. In this work, we present new, meaningful, yet achievable definitions of one-time program security for probabilistic classical functions. We show how to construct one time programs satisfying these definitions for all functions in the classical oracle model and for constrained pseudorandom functions in the plain model. Finally, we examine the limits of these notions: we show a class of functions which cannot be one-time programmed in the plain model, as well as a class of functions which appears to be highly random given a single query, but whose one-time program form leaks the entire function even in the oracle model.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.01876
- arXiv:
- arXiv:2411.01876
- Bibcode:
- 2024arXiv241101876G
- Keywords:
-
- Computer Science - Cryptography and Security;
- Quantum Physics