On a Carleson-Radon Transform (the non-resonant setting)
Abstract
Given a curve $\vec{\gamma}=(t^{\alpha_1}, t^{\alpha_2}, t^{\alpha_3})$ with $\vec{\alpha}=(\alpha_1,\alpha_2,\alpha_3)\in \mathbb{R}_{+}^3$, we define the Carleson-Radon transform along $\vec{\gamma}$ by the formula $$ C_{[\vec{\alpha}]}f(x,y):=\sup_{a\in \mathbb{R}}\left|p.v.\,\int_{\mathbb{R}} f (x-t^{\alpha_1},y-t^{\alpha_2})\,e^{i\,a\,t^{\alpha_3}}\,\frac{dt}{t}\right|\,.$$ We show that in the \emph{non-resonant} case, that is, when the coordinates of $\vec{\alpha}$ are pairwise disjoint, our operator $ C_{[\vec{\alpha}]}$ is $L^p$ bounded for any $1<p<\infty$. Our proof relies on the (Rank I) LGC-methodology introduced in arXiv:1902.03807 and employs three key elements: 1) a partition of the time-frequency plane with a linearizing effect on both the argument of the input function and on the phase of the kernel; 2) a sparse-uniform dichotomy analysis of the Gabor coefficients associated with the input/output function; 3) a level set analysis of the time-frequency correlation set.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.01660
- Bibcode:
- 2024arXiv241101660H
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 42B05;
- 42B08;
- 42B20;
- 42A16;
- 42A20
- E-Print:
- 37 pages, no figures