Composition operators on Paley-Wiener spaces
Abstract
We completely characterize the bounded composition operators $C_\phi f=f\circ\phi$ on the Paley-Wiener spaces $B^2_{\sigma}$ for $\sigma>0$ that are self-adjoint, unitary, cohyponormal, normal, complex symmetric and hypercyclic. Moreover, we show that if $\phi(0)\notin \mathbb{R}$ or $\phi(0)\in \mathbb{R}$ with $0<|\phi(0)|\leq 1$ (for this case, $\sigma<\pi$) then $C_{\phi}$ is cyclic on $B^2_{\sigma}.$
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.01339
- Bibcode:
- 2024arXiv241101339V
- Keywords:
-
- Mathematics - Functional Analysis