Revisit Many-body Interaction Heat Current and Thermal Conductivity Calculation in Moment Tensor Potential/LAMMPS Interface
Abstract
The definition of heat current operator for systems for non-pairwise additive interactions and its impact on related lattice thermal conductivity ($\kappa_{L}$) via molecular dynamics simulation (MD) are ambiguous and controversial when migrating from conventional empirical potential models to machine learning potential (MLP) models. Empirical model descriptions are often limited to three- to four-body interaction while a sophisticated representation of the many-body physics could be resembled in MLPs. Herein, we study and compare the significance of many-body interaction to the heat current computation in one of the most popular MLP models, the Moment Tensor Potential (MTP). Non-equilibrium MD simulations and equilibrium MD simulations among four different materials, $PbTe$, amorphous $Sc_{0.2}Sb_{2}Te_{3}$, graphene, and $BAs$, were performed. We found inconsistency between the simulation thermostat and its implemented heat current operator in our non-equilibrium MD results which violate law of energy conservation and suggest a need for revision. We revisit the virial stress tensor expression within the calculator and identified the lack of a generalised many-body heat current description in it. We uncover the influence of the modified heat current formula that could alter the $\kappa_{L}$ results 29% to 64% using the equilibrium MD computational approach. Our work demonstrates the importance of a many-body description during thermal analysis in MD simulations when MLPs are in concern. This work sheds light on a better understanding of the relationship between interatomic interaction and its heat transport mechanism.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.01255
- Bibcode:
- 2024arXiv241101255T
- Keywords:
-
- Condensed Matter - Materials Science
- E-Print:
- 9 pages, 9 figures