On integral $\mathrm{Ext^2}$ between certain Weyl modules of $\mathrm{GLn}$
Abstract
Consider partitions of the form $\lambda=(a,1^b)$ and $\mu=(a+1,b-1)$,\\ where $a+1>b-1$. In this paper, we determine the extension groups $\mathrm{Ext}_A^2(K_{\lambda}F,K_{\mu}F)$, where $F$ is a free $\mathbb{Z}-$module of finite rank $n$, $K_{\lambda}F$ and $K_{\mu}F$ are the Weyl modules of the general linear group $GL_n(\mathbb{Z})$ corresponding to $\lambda$ and $\mu$, respectively, $A=S_\mathbb{Z}(n,r)$ is the integral Schur algebra and $r=a+b$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.00675
- Bibcode:
- 2024arXiv241100675M
- Keywords:
-
- Mathematics - Representation Theory;
- 20G05