Charge density waves and pinning by lattice anisotropy in 214 cuprates
Abstract
The detection of static charge density waves (CDWs) in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) with x $\sim$ 0.12 at relatively high temperatures has raised the question of what lattice feature pins the CDWs. Some recent structural studies have concluded that some form of monoclinic distortion, indicated by the appearance of certain weak Bragg peaks (type M peaks) at otherwise forbidden positions, are responsible for CDW pinning. As a test of this idea, we present neutron diffraction results for a single crystal of La$_{2-x}$Ba$_x$CuO$_4$ (LBCO) with x = 1/8, which is known to undergo two structural transitions on cooling, from high-temperature tetragonal (HTT) to low-temperature orthorhombic (LTO) near 240 K, involving a collective tilt pattern of the corner-sharing CuO$_6$ octahedra, and from LTO to low temperature tetragonal (LTT) near 56 K, involving a new tilt pattern and the appearance of intensity at peaks of type T. We observe both type M and type T peaks in the LTT phase, while the type M peaks (but not type T) are still present in the LTO phase. Given that CDW order is observed only in the LTT phase of LBCO, it is apparent that the in-plane Cu-O bond anisotropy associated with the octahedral tilt pattern is responsible for charge pinning. We point out that evidence for a similar, but weaker, bond anisotropy has been observed previously in LSCO and should be responsible for CDW pinning there. In the case of LBCO, the monoclinic distortion may help to explain previously-reported magneto-optical evidence for gyrotropic order.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2410.23468
- Bibcode:
- 2024arXiv241023468H
- Keywords:
-
- Condensed Matter - Superconductivity
- E-Print:
- 9 pages, 5 figures, 2 tables